martes, 3 de diciembre de 2013
lunes, 30 de septiembre de 2013
viernes, 24 de mayo de 2013
jueves, 9 de mayo de 2013
Teoría de la dualidad
Tarea IV
BELTRÁN LLORENTE MARIA FERNANDA
DEL VALLE ARMAS MICHELLE
GONZALEZ RICO DIANA VIRGINIA
martes, 7 de mayo de 2013
Unidad 3 Método Simplex Participación 8 Método de las dos fases
Min z =2x1+ 3x2
½ x1+ ¼ x2 ≤ 4
x1+3x2≥20
x1+ x2 = 10
x1,x2 ≥ 0
Agregando las variables artificiales nos queda:
Min z =2x1+ 3x2+Ma1+Ma2
½ x1+ ¼ x2 +x3= 4
x1+3x2-x4+a1=20
x1+ x2 + a2= 10
x1,x2,x3,x4≥ 0 a1,a2≥ 0
FASE 1:
Min g =a1+a2
½ x1+ ¼ x2 +x3= 4
x1+3x2-x4+a1=20
x1+ x2 + a2= 10
x1,x2,x3,x4≥ 0 a1,a2≥ 0
|
x1
|
x2
|
x3
|
x4
|
a1
|
a2
|
sol
|
wj-cj
|
2
|
4
|
0
|
-1
|
0
|
0
|
30
|
zj-cj
|
-2
|
-3
|
0
|
0
|
0
|
0
|
0
|
x3
|
0.50
|
0.25
|
1
|
0
|
0
|
0
|
4
|
a1
|
1
|
3
|
0
|
-1
|
1
|
0
|
20
|
a2
|
1
|
1
|
0
|
0
|
0
|
1
|
10
|
|
x1
|
x2
|
x3
|
x4
|
a1
|
a2
|
sol
|
wj-cj
|
0.67
|
0
|
0
|
0.33
|
-1.33
|
0
|
3.33
|
zj-cj
|
-1
|
0
|
0
|
-1
|
1
|
0
|
20
|
x3
|
0.42
|
0
|
1
|
0.08
|
-0.08
|
0
|
2.33
|
x2
|
0.33
|
1
|
0
|
-0.33
|
0.33
|
0
|
6.67
|
a2
|
0.67
|
0
|
0
|
0.33
|
-0.33
|
1
|
3.33
|
|
x1
|
x2
|
x3
|
x4
|
a1
|
a2
|
sol
|
wj-cj
|
0
|
0
|
0
|
0
|
-1
|
-1
|
0
|
zj-cj
|
0
|
0
|
0
|
-0.50
|
0.50
|
1.50
|
25
|
x3
|
0
|
0
|
1
|
-0.13
|
-0.29
|
-0.63
|
0.25
|
x2
|
0
|
1
|
0
|
-0.50
|
0.17
|
-0.50
|
5
|
x1
|
1
|
0
|
0
|
0.50
|
-0.50
|
1.50
|
5
|
FASE II
|
x1
|
x2
|
x3
|
x4
|
sol
|
zj-cj
|
0
|
0
|
0
|
-0.50
|
25
|
x3
|
0
|
0
|
1
|
-0.13
|
0.25
|
x2
|
0
|
1
|
0
|
-0.50
|
5
|
x1
|
1
|
0
|
0
|
0.50
|
5
|
SOLUCIÓN
x1=5
x2=5
x3=.25
x4=0
Z=25
Unidad 3 Método Simplex Participación 7 Método de la M Grande
x1 + x2 = 2
2x1 + 2x2 = 4
x1, x2 ≥ 0
Pasando a la Forma Ampliada nos queda:
Min z = x1 + x2+Ma1+Ma2
x1 + x2 + a1= 2
2x1 + 2x2 + a2= 4
x1, x2 ≥ 0 a1, a2 ≥ 0
Ahora encontraremos la solución:
|
x1
|
x2
|
a1
|
a2
|
sol
|
zj-cj
|
-1
|
-1
|
-M
|
-M
|
0
|
a1
|
1
|
1
|
1
|
0
|
2
|
a2
|
2
|
2
|
0
|
1
|
4
|
|
x1
|
x2
|
a1
|
a2
|
sol
|
zj-cj
|
3M-1
|
2M-1
|
0
|
0
|
6M
|
a1
|
1
|
1
|
1
|
0
|
2
|
a2
|
2
|
2
|
0
|
1
|
4
|
|
x1
|
x2
|
a1
|
a2
|
sol
|
zj-cj
|
0
|
-M
|
-3M+1
|
0
|
2
|
x1
|
1
|
1
|
1
|
0
|
2
|
a2
|
0
|
0
|
-2
|
1
|
0
|
En esta tabla ya se encuentra la solución óptima ya que las variables artificiales valen cero y ya no hay variable de entrada para escoger.
SOLUCIÓN
x1=2
X2=0
Z=2
Suscribirse a:
Entradas (Atom)